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The Si-NL29 EPR spectrum, which is associated with the positive charge state of interstitial ti-
tanium in silicon, was investigated by electron-nuclear double resonance. Hyperfine-interaction pa-
rameters of 17 shells of silicon neighbors, comprised of 214 atoms, could be determined. These pa-
rameters are analyzed in a linear combination of atomic orbitals treatment that takes the symmetry
properties of the (¢,)° paramagnetic state into account. This analysis yields a minimum value for
the spin density that is transferred from the Ti* ion to the surrounding Si atoms. In a tentative as-
signment of hyperfine tensors to specific lattice sites a spin transfer of at least 40% is derived. This
can resolve the apparent contradiction between reduced central-nucleus hyperfine field and absence

of 2°Si hyperfine interactions in EPR.

I. INTRODUCTION

In comparison to other transition-metal impurities, ti-
tanium diffuses relatively slowly into silicon; its diffusion
coefficient at 1100°C is at least 3 orders of magnitude
smaller than that of the other metals of the first transition
series. Titanium introduces two donor levels in the gap,
near E,+40.25 eV and E.—0.28 eV;"? additionally, an
acceptor level at E, —0.08 eV has been found.> An iden-
tification of these levels with 3d%/3d3, 3d3/3d* and
3d*/3d®, respectively, was suggested by Weber* on the
basis of the Ludwig-Woodbury model,’ assuming intersti-
tial solution of titanium in spite of the low diffusion coef-
ficient.

Recently, a new electron-paramagnetic-resonance (EPR)
~ spectrum, labeled NL29, with isotropic g=1.99806
+0.00004 and spin S =3, was observed.® On the basis of
the hyperfine structure and with the use of the Ludwig-
Woodbury model, this spectrum could be ascribed to Ti*
in a 3d? state at an interstitial site of 43m symmetry, sup-
porting the identification of deep-level transient-
spectroscopy (DLTS) levels. From the observed g shift a
large reduction of the spin-orbit—coupling parameter as
compared to the free ion could be deduced. At the same
time a reduction of the core polarization with respect to
the free ion was deduced from the hyperfine interaction
with magnetic *’Ti and ®Ti nuclei (4=15.66+0.03
MHz). These reductions, when interpreted in simple
ligand-field theory, would indicate a substantial spin
transfer of some 75% to the surrounding silicon lattice.
Although such a transfer would not be incompatible with
the observed low diffusion coefficient of titanium, such an
interpretation is contradicted by the absence of resolved
hyperfine interactions of this spin density with magnetic
28i nuclei in EPR. In order to gain some more insight
into this problem we applied electron-nuclear double reso-
nance (ENDOR) to the Ti* system. This technique has a
resolving power that is 3 orders of magnitude larger than
EPR and has proved to yield valuable information con-
cerning the distribution of the spin density over the silicon
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lattice in a variety of systems like shallow donors,”® radi-
ation defects,” !0 chalcogenides,“‘13 and, recently, inter-
stitial iron'* in silicon. -

The interpretation of these latter measurements ran into
the same difficulties as mentioned for titanium; only 5%
of the spin density could be traced back to the six shells of
Si neighbors with which hyperfine interactions were mea-
sured, while the reduction in core polarization on the cen-
tral nucleus amounts to 43%, indicating a far larger spin
delocalization. This problem has been addressed by
Katayama-Yoshida and Zunger,'> who obtained reason-
able agreement between calculated and experimental spin
density on the Fe,-° nucleus, but found a 29% spin delocal-
ization, at variance with the ENDOR results.

It will be shown in the following that these difficulties
for titanium can be resolved in a linear combination of
atomic orbitals (LCAQ) treatment that takes proper ac-
count of the symmetry and spin multiplicity of the
paramagnetic state. When applied to the Ti;” ENDOR
data this analysis allows much larger amounts of spin
transfer than the one-electron treatment of Watkins and
Corbett'® and thus yields results consistent with the co-
valently delocalized picture. The similar case of Fe? will
be the subject of a separate paper.

II. EXPERIMENTAL PROCEDURE

Floating-zone dislocation-free p-type silicon samples
(20X 2x2 mm?) of various dopings (B, Al, Ga, and In)
were rubbed with wet TiO, powder and subsequently an-
nealed for 10 d at 1380°C under an argon atmosphere in a
closed ampoule of synthetic quartz. After annealing,
samples were allowed to cool to just below red heat at the
entrance of the oven and quenched to room temperature
from there. The samples were then stored at 77 K until
the measurements. In all these samples the Tit EPR res-
onance could be observed; the best signal (large signal-to-
noise ratio, no line broadening due to internal stresses)
was obtained from an In-doped sample of initial resistivi-
ty 10 Q cm, containing 0.12 X 10'® In/cm?3, that was there-
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FIG. 1. Recorder trace of the Ti* ENDOR spectrum at 4.2
K and v=22.90141 GHz for B=818.93 mT, B||[111]. Labels
MS5, G2, etc. refer to the hyperfine tensors. The resonance la-
beled ? forms part of an only partially resolved pattern, the sym-

" metry type of which could not be established.

fore selected for the ENDOR measurements.

These measurements were performed with a su-
perheterodyne spectrometer operating at 23 GHz and ad-
justed to detect the dispersion part of the EPR signal at
an incident microwave power of 1 uW. The magnetic
field could be rotated in the (011) plane of the sample and
was modulated at a frequency of 83 Hz. We used a
silver-coated epibond cavity; in the thin silver layer on the
cylindrical side wall of the cavity a spiral groove was cut,
making it suitable as an ENDOR coil’ For ENDOR
measurements the rf field was square-wave-modulated at
3.3 Hz to allow double phase-sensitive detection of the
signal. An example of such a signal is given in Fig. 1.
The sample was held at 4.2 K.

III. EXPERIMENTAL RESULTS

Each lattice site around a Ti atom at a T, interstitial
site has a 4.7% probability of being occupied by a 2Si iso-
tope with nuclear spin I=+. By applying the symmetry
operations of the 43m symmetry group on such a Bsi
atom at a general position in the lattice, a shell of
symmetry-related lattice sites is generated. In general,
this shell will contain 24 atoms, giving rise to an ENDOR
spectrum of (2S+1)X24 frequency lines for a general
direction of the magnetic field B. If the magnetic field is
in a {011} plane, there are only (25 +1)X 12 resonances
(or less if the magnetic field is along a high-symmetry
direction). The angular dependence of ENDOR lines ori-
ginating from such a shell on rotation of the magnetic
field in the (011) plane is shown in Fig. 2(a). Experimen-
tally, resonances from four such shells were found, labeled
G1—G4 (G denoting general class). If the initial site is in
a {011} mirror plane through the central ion, the shell
contains only 12 atoms, leading to a reduction of the
number of ENDOR lines [Fig. 2(b)]. Eight shells of this
symmetry type were found, labeled M1—M8 (M denoting
mirror plane). The atoms labeled 3 in Fig. 3 form part of
such a shell. If the °Si atom is on a (100) axis through
the central ion, the shell will contain six atoms. The EN-
DOR pattern of such a 2mm-symmetry-class shell is also
given in Fig. 2; only one such pattern was found, labeled
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FIG. 2. Angular dependence of the effective hyperfine con-
stant A for the four symmetry types of shells on rotation of the
magnetic field in the (0T1) plane, shown as examples of (a) a G-
class interaction (the pattern is that of the G1 shell), (b) an M-
class interaction (the pattern arises from the M1 shell), (c) a
2mm-class interaction (the pattern is that of the T1 shell), and
(d) a 3-class interaction (the pattern arises from the 31 shell).



T1 (T denoting twofold axis). The atoms numbered 2 in
Fig. 3 constitute such a shell. If the initial ion is on a
(111) axis of threefold rotational symmetry through the
central ion, only four symmetry-related sites are generat-
ed. Four such shells were found experimentally [Fig.
2(d)], labeled 31—34. Atoms labeled 1 in Fig. 3 constitute
a shell of this type. No other types of shells exist in Ty
symmetry; the 17 measured shells contain in total a num-
ber of 214 Si atoms.

The data were analyzed with the following spin Hamil-
tonian, containing electronic Zeeman, hyperfine, and nu-
clear Zeeman interaction terms:

X =gupB-S+ 2(S°Ki'li —gnunBL), (1
i

where the parameter i enumerates the lattice sites around
the defect. The ENDOR transitions are; to first order,
given by

hv=AE=|gyuyB—h-A-hm, | , 2)

with h a unit vector along the magnetic field B. The EN-
DOR spectrum is thus seen to be symmetric around the
nuclear Zeeman frequency gyuyB/h. Therefore only
" transitions above the nuclear Zeeman frequency needed to
be measured. It was not always possible to observe the
transitions in both the |ms| =+ and |m,| =3 multi-
plets; due to severe overlapping of ENDOR patterns in
the region close to the nuclear Zeeman frequency, the
determination of the |m, | =7 transitions was often ob-
" structed in that part of the spectrum. On the other end of
the ENDOR spectrum, the |m,| =+ resonances were
very weak and therefore not always used in the analysis.
The complete ENDOR spectrum of all measured shells is
given in Fig. 4.

We obtained a satisfactory least-squares fit to the EN-
DOR data in a computer diagonalization of the Hamil-
tonian (1), keeping the electronic g value fixed at
g=1.99806 (Ref. 6) and the nuclear g value at
gy =—1.1097."7 The results are summarized in Table I,
where it is also indicated which transitions were used in

FIG. 3. The Ti interstitial (black sphere) surrounded by Si
atoms. This figure also shows our choice of coordinate system,

on which the Cartesian hyperfine tensors and directions of

eigenvectors of Table I are defined.
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FIG. 4. The complete angular dependence of resolved EN-
DOR resonances on rotation of the magnetic field in the (0T1)
plane. The thick lines designate the ENDOR transitions in the
|mg |= -;— multiplet, the thin lines those in the |m, | = % multi-
plet.



7132 , van WEZEP, van KEMP, SIEVERTS, AND AMMERLAAN 32

TABLE I. Parameters and orientations of hyperfine tensors of 2Si neighbors of Si:Ti* (in kHz). Experimental uncertainty is +0.4
kHz.

-

Shell | my | A ‘ i A; n;
31 5 8123.6 441.6 441.6 1 9006.9 (—0.577, —0.577, —0.577)
441.6 8123.6 441.6 2 7682.0 (4 0.408, —0.816, +0.408)

441.6 441.6 8123.6 3 7682.0 (4 0.707, + 0.000, —0.707)

32 I 1416.9 —678.2 —678.2 1 60.5 (—0.577, —0.577, —0.577)
—678.2 1416.9 —678.2 2 2095.1 (+ 0.408, —0.816, + 0.408)

—678.2 —678.2 1416.9 3 2095.1 (+ 0.707, + 0.000, —0.707)

33 Ty 748.5 115 11.5 1 771.5 (—0.577, —0.577, —0.577)
~ 11.5 748.5 11.5 2 737.0 (+ 0.408, —0.816, + 0.408)
115 11.5 748.5 3 737.0 (+ 0.707, 4+ 0.000, —0.707)

34 3 129.5 —182 —182 1 93.1 (—0.577, —0.577, —0.577)
—18.2 129.5 —18.2 2 147.6 (+ 0.408, —0.816, + 0.408)

—182 —182 129.5 3 147.6 (+ 0.707, + 0.000, —0.707)

Tl 5 2333.1 4751.6 0.0 1 7084.7 (—0.707, —0.707, + 0.000)
4751.6 2333.1 0.0 2 —2418.6 (—0.707, + 0.707, + 0.000)

0.0 0.0 —2108.9 3 —2108.9 (+ 0.000, + 0.000, + 1.000)

Mi 5 2902.1 240.5 90.5 1 2661.5 (—0.707, + 0.707, + 0.000)
240.5 2902.1 90.5 2 31824 (—0.675, —0.675, —0.297)

90.5 90.5 27713 3 2731.5 (+ 0.210, + 0.210, —0.955)

M2 5 2139.9 15.0 147.4 1 2124.9 (—0.707, + 0.707, + 0.000)
15.0 2139.9 147.4 2 2563.7 (4 0.321, + 0.321, + 0.891)

147.4 147.4 24573 3 2048.6 (—0.630, —0.630, + 0.454)

M3 . 366.4 44.9 3.3 1 321.6 (—0.707, 4 0.707, + 0.000)
44.9 366.4 3.3 2 411.8 (—0.704, —0.704, —0.099)

3.3 3.3 365.0 3 364.5 (—0.070, —0.070, + 0.995)

M4 . 316.9 74.9 58.6 1 242.0 (—0.707, + 0.707, + 0.000)
74.9 316.9 58.6 2 435.9 (—0.624, —0.624, —0.470)

58.6 58.6 280.6 3 236.4 (+ 0.333, 4+ 0.333, —0.882)

M5 4 220.7 36.8 —14.6 1 183.9 (—0.707, + 0.707, + 0.000)
36.8 220.7 —14.6 2 265.1 (—0.663, —0.663, + 0.346)

—14.6 —14.6 209.2 3 201.6 (+ 0.245, + 0.245, + 0.938)

M6 2 168.7 0.6 —13.1 1 168.1 (—0.707, + 0.707, + 0.000)
0.6 168.7 —13.1 2 222.9 (—0.231, —0.231, + 0.945)

—13.1 —13.1 216.6 3 163.0 (—0.668, —0.668, —0.326)

M7 3 70.5 20.6 24.1 1 49.9 (—0.707, + 0.707, + 0.000)
20.6 70.5 24.1 2 197.4 (—0.216, —0.216, —0.952)

24.1 24.1 186.5 3 80.2 (+ 0.673, + 0.673, —0.305)

M8 4 119.9 225 14.7 1 97.3 (—0.707, + 0.707, + 0.000)
225 119.9 14.7 2 151.9 (+ 0.644, + 0.644, + 0.414)

14.7 14.7 106.2 3 96.8 (—0.293, —0.293, + 0.910)

Gl1 . 1471.1 —203.1 —185.0 1 1834.6 (+ 0.603, —0.615, —0.509)
—203.1 1464.4 206.6 2 1268.0 (4 0.774, + 0.605, + 0.187)

—185.0 206.6 1366.1 3 1199.0 (4 0.193, —0.507, + 0.840)
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TABLE 1. (Continued).

Shell | m, | ' A i A; - n;
G2 3 631.6 —76.8 —85.9 1 834.2 (4 0.494, —0.606, —0.623)
—76.8 667.7 101.0 2 572.1 (—0.597, —0.758, + 0.264)
—85.9 101.0 667.9 3 561.0 (—0.632, + 0.242, —0.736)
G3 3 157.8 -279 —234 1 198.7 (4 0.664, —0.555, —0.501)
—279 146.8 20.6 2 127.2 (—0.541, + 0.106, —0.835)
—23.4 20.6 144.9 3 123.6 (—0.516, —0.825, + 0.229)
G4 3 141.6 —40.2 . —28.6 1 198.6 (+ 0.654, —0.588, —0.476)
—40.2 130.1 29.4 2 102.2 (—0.596, —0.012, —0.803)
—28.6 29.4 123.0 3 93.9 (—0.467, —0.809, + 0.358)

the fits. The tensors and directions of eigenvectors in this
table are defined in the coordinate system of Fig. 3 and
valid for the following:

(1) The atom on the [111] axis for shells 31—34.

(2) One of the two atoms on the [001] axis for T1, since
no unique assignment of the hyperfine tensor to one of
these two atoms can be made. .

(3) One of the two atoms in the (110) mirror plane, for
shells M1—MS8 (as for T1).

(4) One of the 24 atoms in the low-symmetry shells
G1—G#4 (as for T and M shells).

Data for atoms in the shells, other than just specified, can
be obtained by applying the appropriate symmetry
transformations.

Typical widths of the resonances were 2—3 kHz full
width at half maximum (FWHM), allowing line positions
to be determined with an accuracy better than 0.4 kHz.
The deviations of calculated ENDOR frequencies from
experimental values were generally less than this value.

IV. DISCUSSION -

The hyperfine-interaction tensor is usually split into
two parts, A=a 1+ B, where a is the isotropic part of the

hyperfine tensor a =(TrA)/3 and Ba symmetric traceless
tensor. Both parts have their interpretation in terms of
the defect wave function; a is related to the wave function
through the Fermi-contact interaction,

“a=Fpgupgnpy | WO |, &)

where | W(0)|? is the probability density of the paramag-
netic electrons on the nucleus involved. The dipole-dipole
interaction between the magnetic moments of electron
density and nucleus is responsible for the anisotropic part
of the tensor:

3x,~x_,~ 5,1
r5 3

Ho
By= Eg,u'BgNﬂN<W ‘l’> ) 4)

where W is the electronic wave function and x;,x;=x,y,z.

Following Owen and Thornley,!® we will describe the
wave function of the paramagnetic state by taking linear
combinations of 3s and 3p orbitals of the surrounding sil-
icon lattice that transform as the ¢, irreducible representa-
tion of the 43m-symmetry point group, and admix these
to the d,,, d),;, and d, orbitals of the same ¢, representa-
tion that are supposed to make up the paramagnetic
state.” These combinations are found with the use of pro-
jection operators, a procedure outlined, e.g., by Di Barto-
lo,!® whose terminology we will use in the following. For
the 3-class shells we obtain

Yy =adxy+%Bi(sl —5;—83+54)+3Vi(01—0,—03+09) + T8 [(—Ty5 + 7 +773x—7T4x)+‘/§(7le—77'2y—ﬂ‘3y+77'4y)] )

V,, =ad,, +5Bi(s,—s; +53—5¢)+ TVil01—024+03—04) + 18, [ (=T 15 +Tox — T35 +T4x) — V31 — 1y +113 — 4]

W, =adpy + 3Bi(s1 452 —53—54)+ 3Vi(01+02—03—04) + 58, [ (715 + Mo — T3 —74,)] . (5

The numbers 1, 2, 3, and 4 refer to the ligands at the posi-
tions nnn, 7infi, n A A, and ©i 7 n (n is an integer), respec-
tively, the index i enumerates the 3-class shells, and a, S;,
Yi, and §; are parameters to be determined by experiment.
The orbitals designated by o are p orbitals on the ligand,
taken to point in the direction of the central ion, while the
1, and 1y, are taken to point along the [121] and [101]
directions, respectively. The orientations of the orbitals

on the other ligands are obtained by C, rotations about
the x, y, and z axes [Fig. 5(a)]. The wave function is only
normalized when the ligand contributions from all shells
are added; a? is then the spin density on the central nu-
cleus.

For d*(¢t3) the orbital magnetic moment is quenched
and the ground-state wave function is then a single deter-
minant,
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In this case it is permissible to add up the separate contri-
butions to the hyperfine structure from the individual
singly occupied orbitals.!® In deriving the matrix ele-

ments of (3) and (4) we make the usual LCAO approxima-
|

—b . —bgq
(+7i— 58] —b  |+553’
2b

with
2 Mo (r- )
=% 4 g,usgzv,uzv
and
Ho
byy=—— ) R'_3
dd 41Tg#BgN.u1v

(R denotes Ti-2°Si distance).
by

The isotropic part is given

a=L3p2 S Ha8ppgnpn |51(0) | 2= >S5 4

25 4

The factor 1/2S allows for the fact that our results are ex-
pressed in the total spin S (S=-3). Due to our choice of
coordinates this tensor is on principal axes and may be
conveniently compared to experiment.
In S= systems these tensors are given by
xw=Ay,=a'—b" and Az=a’+2b', in which
a' —1; a2a and b'=7?B?. The spin density on the atom
concerned is then given by 7% while the relative distribu-
tion over s and p orbitals is given by a? and B2, respective-
ly.'% In this analysis @’ and b’ are required to have the
same sign, a limitation which is no longer valid if this
analysis is applied to higher-spin systems, as can be seen
_ by inspection of (6). In a situation where the spin density

tion and neglect contributions to B from atoms on other
lattice sites than the one considered, except those from the
central ion, which are calculated in the point-dipole ap-
proximation. For a p orbital of the form ¥, =x,f(r) on
atom 1 (x; =x,y,z), we obtain

b |, (6)

2bdd

I

in the 7 orbitals exceeds that in the o orbitals by at least a
factor of 2, 3y?— 267 will be negative, thus causing a’
and b’ to be of opposite sign (neglecting distant dipole-
dipole interactions for simplicity). Experimentally, this
situation occurs, e.g., for tensor 32 for all values of a, in-
dependent of the assignment to a specific atom. As an ex-
ample, one can consider in (5) such combinations of o and
m bonds on the nearest-neighbor atoms that their direc-
tions coincide with the lattice bonds between the atoms 1
and 2 in Fig. 3. In this case, 8;=2V2y,, so that

bl

b

This also serves as an illustration of the enhanced spin
transfer in comparison to the spin density that would be
derived from a one-electron treatment. i
From (6) and (7) it is obvious that ¥? and 87 cannot be
determined separately from experiment and consequently,
the transferred spin density to a shell B2 +v}+8? cannot

81—- —2. 25}’1—2S

3.2
Y1—7%

~ be obtained from the data. It is possible, however, to ob-

tain an estimate of the minimum spin density (as a func-
tion of @?) that is transferred to a shell of silicon neigh-
bors (MTSD) by setting either y? or 87 equal to zero, de-
pending on the sign of B,,, and using the values for
|5,(0)|%and (r—3),.2°

In the case of a 2mm-class shell we obtain the follow-
ing symmetry orbitals:
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1 1 .
Yy =adxy+723(sl -s6)+°‘/_§'7(01_06)+%8(1722 F T3y +Tag+ sy )+ 7€My + T3y — Ty — sy )
1 1 ' '
V,, =ad,, + 7-2—B(s2 —s54)+ 727(02-—04)+ 38T 1 4 Ty + 75y +T6x )+ %e(m, + M3 —Ts; —Tey) » (8)

Yy =ady + %25(53-55)+%21’(03—05)+ (T 1y + 19y + Ty +Tey) + TE(T 1+ Tos — Ty — gy )

The numbers 1—6 refer to the following atoms: (0,0,2n),
(2n,0,0), (0,2n,0), (—2n,0,0), (0, —2n,0), and (0,0—2n).
Again, o designates a p orbital on a ligand, pointing in the
direction of the central ion; the 7 orbitals are along the
positive x, y, or z directions for all atoms [Fig. 5(b)].
This choice yields the following hyperfine tensor com-
ponents of atom 1 on xyz coordinates,

B‘-z=_—2%[%(62+62—2y2)b-——3a2ba] ,

9

and the isotropic part,
1 5,2
a=——32§#03#381v#1v |51(0)|2. (10)

By inspection of (9) and (10) it can be seen that the spin
density in the o(y?) and 7(8%¢€?) orbitals can not be ob-
tained separately from the data; neither can the total spin
density in the p orbitals in a shell y2+8%+¢€* be deter-
mined. As in the case of the 3-class tensors, only a
minimum value for the spin transfer can be extracted
from the data.

Similarly, it is possible to derive (rather lengthy) expres-
sions for the symmetry orbitals and hyperfine tensors of
M- and G-class atoms. For the M-class tensors the sym-
metry orbitals contain five independent parameters for the
admixture of o and 7 orbitals; in the case of G-class ten-
sors there are even nine such parameters. Again, the sum
of all admixed amounts can not be related directly to the
experimental data, so that only a minimum of the
transferred spin density can be determined. For this pur-
pose the expressions for the hyperfine tensors are con-
veniently solved in the om,7,-coordinate system, necessi-
tating, however, the transformation of the experimental
tensor to this coordinate system and thus the assignment
of the experimental tensor to a specific shell (atom). For
the M-class shells this assignment was accomplished by
evaluating the angle between the largest eigenvector and
possible lattice vectors to the atoms in the (110) plane. It
was found that an assignment could be made where the

principal directions of the largest principal values of all -

eight M tensors fell well within 10° from lattice vectors to
sites in the eleven closest M-type shells (Table II and Fig.
6). This corresponds to a picture in which transfer to o
orbitals and/or distant dipole-dipole  interaction
predominate(s) the transfer to 7 orbitals. Isotropic and

r

anisotropic hyperfine interactions of subsequent shells
roughly decrease with distance to the central nucleus in
this assignment.

In case of the G-class tensors the same procedure could
not be followed, due to the fact that all these tensors are
approximately (111)-axial. Here we choose rather arbi-

" trarily the nearest shell to have the largest isotropic hyper-

fine interaction. Since we cannot discriminate which ten-
sor belongs to which specific site in this case, we calculat-
ed the MTSD of the tensors G1—G4 for all 24 atoms in a
shell as a function of a? and choose the smallest MTSD to
be the MTSD.

In order to take into account the distant dipole-dipole
interaction, we also have to assign the 3-class tensors to
specific sites in order to obtain an estimate for the MTSD
as a function of a?; again, we assigned the tensor with the
largest isotropic hyperfine interaction to the nearest shell.
Assigning the tensor with the largest anisotropic hyper-
fine interaction to the nearest shell would be equally well
defendable, but yields larger MTSD values. Since it is our
aim to establish a minimum for the spin transfer to all
measured shells, we will not pursue this latter identifica-
tion. The complete assignment is summarized in Table II;
for convenience we add a list of lattice sites around the in-

M7 M6

FIG. 6. The cross section of the (110) plane with the Ti inter-
stitial. Indicated by lines are the principal directions of all mea-
sured M-class tensors with the largest principal value.
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TABLE II. Assignment of experimental tensors to atomic sites around the Ti* interstitial and angles
between principal axis of largest eigenvalue and lattice vector or the [1TT] direction.

Atom v Angle with
Tensor Imn ) Axis [Imn] [1T1]
31 111
32 222 or 222
33 222 or 222
34 333
T1 002 or 002
Ml 331 (—0.675, —0.675, —0.297) 4.0
M2 113 (0.321, 0.321, 0.891) 1.8
M3 551 (—0.704, —0.704, —0.099) 2.4
M4 442 (—0.624, —0.624, —0.470) 8.6
M5 442 (—0.663, —0.663, 0.346) 0.8
M6 . 226 (—0.231, —0.231, 0.945) 6.2
M7 115 (—0.216, —0.216, —0.952) 2.0
M3 553 (0.644, 0.644, 0.414) 1.5
Gl1 240 or 240 (0.603, —0.615, —0.509) 4.7
G2 531 (0.494, —0.606, —0.623) 5.7
G3 460 or 460 (0.664, —0.555, —0.501) 6.7
G4 a*<0.25: 713 (0.654, —0.588, —0.476) 7.3
a?>0.25: 137

TABLE III. Shells of lattice sites around the T interstitial
position in silicon. The shells marked with an asterisk (%) show
resolved hyperfine interactions in the assignment of Table II.

Distance
Shell Type Position Sites (A)
1* 3a 111 4 2.35 TABLE IV. Isotropic hyperfine parameters of 2Si neighbors
2* Ta 200 6 2.71 of Si:Ti* (in kHz) and derived spin densities 37 in s orbitals per
3* Ma 3171 12 4.50 shell (in %).
*
= 2 2 : e Shell a (kHz) B (%)
6* Mb 331 12 591 31 8123.6 0.71
7* Ga 420 24 6.07 32 1416.9 0.12
8* 3d 333 4 7.05 33 748.5 0.07
9* Mc 511 12 7.05 34 129.4 0.01
10* Gb 531 24 8.03
11 Tb 600 6 8.14 T1 852.4 0.11
12* Md 442 12 8.14
13* Me 442 12 8.14 M1 2858.4 0.75
14 Mf 533 12 8.90 M2 2245.7 0.59
15 Mg 622 12 9.00 M3 366.0 0.10
16* Mh 622 12 9.00 M4 304.8 0.08
17* Mi 551 12 9.69 M5 216.9 0.06
18 Mj 711 12 9.69 M6 184.7 0.05
19* Ge 640 24 9.78 M7 109.2 0.03
20* Mk 553 12 10.42 M8 115.3 0.03
21* Gd 731 24 10.42
22 M! 733 : 12 11.11 Gl 1433.9 0.75
23 Mm 644 12 11.19 G2 655.8 0.34
24 Mn 644 12 11.19 . G3 149.8 0.08

25 Ge 820 24 11.19 G4 131.6 0.07
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terstitial Ti ion (Table III). It should be stressed here that
this assignment is a tentative one. The estimate for the
MTSD, however, is not altered dramatically if another as-
signment is chosen. The spin densities derived from the
isotropic part of the hyperfine-interaction tensors are col-
lected in Table IV. Together with the (minimum) contri-
butions from the anisotropic part of the hyperfine tensors,
MTSD values as a function of a® result. These are plotted

in Fig. 7. The connection between transferred and Ti-

7137

localized spin density is represented by the dashed line in
Fig. 7(d); below the goint where this line and total
- MTSD(a?) intersect (a?<0.62), we obtain consistent re-
sults; above this point the normalization condition is
violated and this region is therefore unphysical. It follows
that the spin transfer to the surrounding silicon lattice
must be at least 38%.
The MTSD from M- and G-class shells decreases as a
function of a? as expected, since part of the anisotropy of
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FIG. 7. Minimum transferred spin densities to the lattice versus the spin localization a® on the Ti* ion as obtained from the
hyperfine-interaction tensors in the assignment of Table II. (a) 3-class shells, (b) M-class shells, (c) G-class shells; and (d) total over all
shells. The connection between transferred and Ti localized spin density is represented by the dashed line.
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these tensors must be due to distant dipole-dipole interac-
tion, necessitating the presence of less spin density on a
29i nucleus. For the 3- and 2mm-class shells, however,
the MTSD falls first and increases next with increasing
a®. This is caused by the large correction of the distant
dlpole-dlpole 1nteract10n, which chang&s the sign of B,,;
in order to maintain consnstency with sign and magnitude
of the experimental tensors it is then necessary to intro-
duce more spin density in the 7 orbitals.

That the transfer to 7 orbitals may be quite significant
follows from the fact that T1 is approximately (011)-
axial, while the 2°Si atom has the Ti ion in a (100) direc-
tion. A large spin density in the o orbital and/or large
dipole-dipole interactions with the central ion would tend
to make this tensor axial around a (100) direction. This
observation therefore forms a strong indication that the
transfer of spin density to 7 orbitals of atoms in the
second shell is the mechanism determining the hyperfine
tensor T1. In this context it should be realized that
transfer of spin density from d,},d,,,d,, orbitals of a cen-
tral ion 4 to o orbitals of llgand B atoms in an AB¢ com-

plex of m3m point-group symmetry is forbidden. As the

six atoms in a 2mm-class shell bear a close resemblance to
such an ABg system, it is not unlikely that most of, the
transferred spin density will be found in the 7 orbitals; the
MTSD of some 20% derived from T1 may therefore be a
good indication of the factual spin density in the second-
neighbor shell. In the case of the 3-class tensors such an
analysis is not fruitful, since both o and 7 transfer are al-
lowed in an AB, complex, which is itself of 43m symme-
try. The spin transfer to such shells may therefore be
severely underestimated. The real spin density for M- and
G-class tensors may' for similar reasons be appreciably
higher than the derived MTSD on these shells.

The observed reduction in core polarization [though not
as high as estimated in Ref. 6, where we erroneously omit-
ted a factor 1/2S] of some 75% for Ti* is therefore not
inconsistent with the hyperfine structure as measured in

ENDOR, and constitutes a strong indication that the fac-
tual spin transfer to the lattice is indeed of this order. We
must be careful with the conclusion that the transferred
spin density is 75%, however, since it is based on the as-
sumption that the central-ion hyperfine-interaction pa-
rameter is entirely determined by core polarization;® a
small residual spin density in the 4s orbital could alter
this estimate considerably. The 2°Si ENDOR thus sets a
lower limit of 40% to the spin transfer, while the *'Ti hy-
perfine interaction sets an upper limit of 75%.

A similar treatment was applied to the case of Fe,,
where the two paramagnetic electrons are in the e state,’
for which symmetry orbitals and hyperfine tensors were
also derived. These expressions will be published in a
forthcoming paper.

V. CONCLUSIONS

The measured perturbation of the titanium interstitial
extends over 214 Si atoms in 17 symmetry shells. This in-
dicates a substantial spin transfer to the lattice, consistent
with the observed reductions in spin-orbit—coupling pa-
rameter and impurity hyperfine field. The absence of
resolved hyperfine interactions of this spin density with
magnetic »°Si nuclei in EPR can be explained in a LCAO
treatment that takes symmetry properties and spin multi-
plicity of the paramagnetic ¢, state into account: It turns
out that the spin density in 7 orbitals has an opposing ef-
fect on the hyperfine-interaction tensor as compared to
the distant dipole-dipole interaction with the central nu-
cleus and the spin density in the o orbitals. As a result
only a minimum transferred spin density of ~40% can be
obtained from the Ti;* ENDOR data.
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